Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur

> Recognised by U.G.C New Delhi under section 2 (f) & 12 (b) of UGC act 1956

- 1. By using \in - δ technique of limit of a function, show that $\lim_{x \to 1} 3x^2 + x = 4$.
- 2. Examine the continuity of the function f defined as:

$$f(x) = \begin{cases} 2+x & ,x \le 1\\ 4-x & ,1 < x \le 2\\ -2+3x-x2 & ,x > 2 \end{cases}$$

at the points x = 1 and x = 2.

3. Let
$$f(x) = x \cdot \sin(1/x)$$
 , $x \neq 0$
= 0 , $x = 0$

Show that f is continuous but not differentiable at x = 0.

4. If
$$y = a \cos(\log x) + b \sin(\log x)$$
, then show that :

$$x^2 \ y_{n+2} + (2n+1)x \ y_{n+1} + (n^2+1)y_n = 0.$$

5. Prove by Maclaurin's theorem, that:

$$e^{x}$$
. $\log_{e}(1+x) = x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \cdots$

- 6. Find the radius of curvature for the cycloid $x = a(t + \sin t)$, $y = a(1 \cos t)$ at $t = \pi/2$.
- 7. Find the asymptotes of the curve:

$$y^3 - 5xy^2 + 8x^2y - 4x^3 - 3y^2 + 9xy - 6x^2 + 2y - 2x = 1.$$

- 8. Evaluate:
 - $1. \lim_{x \to 0} x \tan \left(\frac{\pi}{2} x \right)$
 - $2.\lim_{x\to 0}(\cos ec\ x)^{\frac{1}{\log x}}$
- 9. If $u = \log_{e} \sqrt{(x^2 + y^2 + z^2)}$ then prove that :

$$(x^2 + y^2 + z^2) \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = 1.$$

10. If $z=f(x,\,y)$ and $x=e^u-e^{-v},\,y=e^{-u}+e^v,$ then prove that :

$$\frac{\partial z}{\partial u} - \frac{\partial z}{\partial u} = x \frac{\partial z}{\partial u} - y \frac{\partial z}{\partial u}$$

Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur

> Recognised by U.G.C New Delhi under section 2 (f) & 12 (b) of UGC act 1956

11. If z is a homogeneous function of x and y of degree n, then prove that:

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = nz.$$

12. If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$, then show that :

$$\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)} = r^2 sin\theta$$

13. Evaluate:

$$\int \frac{2x+5}{\sqrt{x^2+3x+1}}$$

14. Show that:

$$\int_0^1 \frac{(1 - 4x + 2x^2)}{\sqrt{2x - x^2}} dx = 0$$

15. Prove that:

$$\int sec^{n} x dx = \frac{sec^{n-2}x \cdot \tan x}{n-2} + \frac{(n-2)}{(n-1)} \int sec^{n-2}x \, dx$$

and hence evaluate $\int sec^6x dx$.

16. Evaluate:

$$\int_0^{\pi} \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x}$$

17. Show that $f(x) = \frac{1}{1 - e^{\frac{1}{x}}}$, $x \ne 0$ has a simple discontinuity at x = 0

18. If $y = \sin(ax + b)$, then prove that:

$$y_n = a^n \sin(ax + b + \frac{n\pi}{2}).$$

19. Expand log x in powers of (x - 1) upto the terms in x^2 .

20. Find the radius of curvature of the curve $s = c \log \sec \psi$.

Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur

> Recognised by U.G.C New Delhi under section 2 (f) & 12 (b) of UGC act 1956

21. If
$$z = \sin xy$$
 and $x = 2t + 5$, $y = 3t^2$, find $\frac{dz}{dt}$.

22. If
$$u = 2x + 3y$$
; $v = 5x + 6y$, then find $\frac{\partial(u,v)}{\partial(x,y)}$.

23. Evaluate:

$$\int_0^{\frac{\pi}{2}} \sin^5 x \cdot \cos^4 x \, dx$$

24. Find:

$$\int \frac{dx}{\sqrt{x^2 - 2x + 5}}$$

25. If
$$\cos^{-1} \frac{y}{b} = \log \left(\frac{x}{n}\right)^n$$
, prove that

$$x^2y_{n+2} + (2n+1)xy_{n+1} + 2n^2y_n = 0.$$

26.Prove that

$$\log secx = \frac{1}{2}x^2 + \frac{1}{12}x^4 + \frac{1}{45}x^6 + \cdots$$

27. State and prove the all form of Taylor's Theorem.

28. If
$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$$
, $x \neq y$ then show that

i.
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$$

ii.
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 - 4\sin^2 u)\sin 2u.$$

29.If $v = r^m$, where $r^2 = x^2 + y^2 + z^2$, show that

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = m(m+1)r^{m-2}$$

30. Find the envelope of the lines $\frac{x}{a} + \frac{y}{b} = 1$, when the parameters a and b are connected by the relation a + b = c.

31. If the $x = r \sin \theta \cos \emptyset$, $y = r \sin \theta \sin \emptyset$. $z = r \cos \theta$,

Show that
$$\frac{\partial(x,y,z)}{\partial(r,\theta,\emptyset)} = r^2 \sin \theta$$

32. Verify
$$JJ' = 1$$
, if $x = u(1 - v)$, $y = uv$.

Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur

> Recognised by U.G.C New Delhi under section 2 (f) & 12 (b) of UGC act 1956

- 33.Expand $\sin xy$ in power s of (x-1) and $\left(y-\frac{\pi}{2}\right)$ upto second degree terms.
- 34.Divide 24 into three parts such that the continued product of the first, square of second and cube of the third is maximum.
- 35. Find the maximum and minimum distance of the point (3,4,12) from the sphere $x^2 + y^2 + z^2 = 1$.

36.If
$$u_n = \int_0^{\frac{\pi}{2}} \theta \sin^n \theta \ d\theta$$
 and $n > 1$, prove that

$$u_n = \frac{1}{n^2} + \frac{n-1}{n} u_{n-2}$$
. Hence deduce that $u_5 = \frac{149}{225}$.

- 37. Obtain a reduction formula for $\int x^m (\log x)^n dx$ and use it to evaluate $\int_0^1 x^4 (\log x)^3 dx$.
- 38. Evaluate $\int \frac{dx}{(x-1)^2(x-2)(x^2+4)}$.

39.If
$$I_n = \int_0^a (a^2 - x^2)^n dx$$
 and $n > 0$, prove that $I_n = \frac{2na^2}{2n+1}I_{n-1}$