Question Bank (2023-24)

Subject – Mathematics I (Sem IV)

(Real Analysis)

Unit-I

1) Define-Closed Interval ,Open Interval, Semi Closed and semi open interval.

2) Define- Bounded Set , Unbounded Set, Bounded Above, Bounded Below.

3) Theorem- Let X be a non-empty subser of R which is bounded above. Then a real number M is the supremum of X if and only if

(a) $x \le M$, for all $x \in X$

(b) For each real number $\varepsilon > 0$, there is a real number $x \in X$ such that $x > M - \varepsilon$.

4) Let X<Y \subseteq R be non empty bounded sets and $\alpha \in$ R. Then

a)sup(X+Y)=Sup X +SupY

b)Inf(X+Y)=Inf X +InfY

- 5) Define Neighbourhoods. Prove that an open interval is a nbd of each of its pair.
- 6) Prove that a finite set is not a nbd of any of its points.
- 7) Define Open set. The union of an arbitrary collection of open set.
- 8) Theorem- Every Infinite bounded subset of R has a limit point.
- 9) Derived set of a set X is closed.

Unit-II

- 1) Theorem on Convergent Sequence.
- 2) Every convergent sequence has a unique limit.
- 3) Show that the sequence <xn>, Where Xn = $\frac{1}{2n}$ converges to 0.
- 4) Define-Operation on sequence, constant sequence.
- 5) Algebraic properties of convergent sequence.
- 6) Theorem-sandwich Theorem.
- 7) Theorem-A Monotonic increasing sequence is convergent, if and only if it is bounded.
- 8) Theorem on Cauchy sequence.

Unit-III

- 1) Theorem Necessary and sufficient condition of a series
- 2) The Series $1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}$ is not convergent.
- 3) The series $1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} + \dots$ is not convergent.
- 4) Theorem-If $\sum xn$ and $\sum yn$ be two given positive term series such that $\frac{Xn}{Yn} = I \neq 0$, where I is finite, then the two series $\sum Xn \& \sum Yn$ are either both convergent or divergent.
- 5) Theorem- Cauchy's Root Test.

6) Theorem- D'Alembert's Ratio Test.

Unit-IV

- 1) Properties of Integeal equation.
- If M and m be the supremum and infinite of a bounded function f on [a,b]then m(b-a)≤ L (p,f) ≤U(p,f) ≤M (b-a).
- 3) Theorem (Darboux's theorem)
- 4) A bounded monotonic function f defined on [a,b]is integrable on[a,b].
- 5) Mean Value Theorem for integral.