

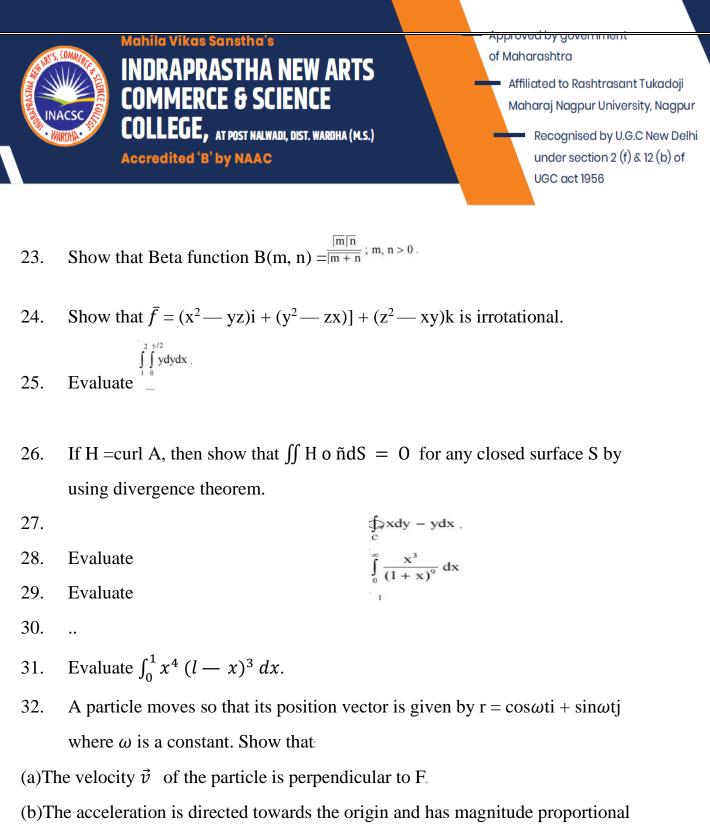


- 14. Consider a simple closed curve C in a simply-connected region with appropriate properties, Prove that M dx + N dy = O if and only if  $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$  everywhere in the region.
- 15. Verity Green's theorem in the plane for  $\oint (3x^2 8y^2) dx + (4y 6xy) dy$ , where C is theboundary of the region defined by  $y = \sqrt{x}$  and  $y = x^2$ .
- 16. Verify the divergence theorem for  $A = 4xi 2y^2j + z^2k$  taken over the region bounded by  $x^2 + y^2 + z^2 = 4$ , z = 0 and z = 3.
- 17. Evaluate  $\iint \overline{\nabla} x \overline{A} \circ \hat{n} dS$  where A =((x<sup>2</sup> + y-4)*i* 2y<sup>2</sup>*j* + z<sup>2</sup>k) and S is the surface of the hemisphere x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup> = 16 above xy-plane,
- 18. Verify Stoke's theorem for the vector field defined by = (x<sup>2</sup> y<sup>2</sup>) i + 2xyj in the rectangular region in the xy plane bounded by lines x = O, x = a, y
  = 0, y = b.
- 19. Evaluate FoñdS by using divergence theorem, where  $F = 4xzi y^2j + yzk$ and S is the surface of the cube enclosed by x = O, y = O, z = O, x = 1, y = 1, z = 1
- 20. Evaluate  $\oint [(xy y^2)dx + (x^2 y)dy]$ , by using Green's theorem in a plane, where C is the closed curve of the region bounded by y = x and  $y = x^2$
- 21. Test the convergence of .
- (i)  $\int_0^1 \frac{\cos x}{x^2} \, \mathrm{d}x$

22. Prove that

(i)  $\overline{n+1} = n!, n = 1, 2, 3, \dots$ 

o 7/1 4



to the distance from the origin and

(c)  $\bar{r} x \bar{v} = \bar{a}$ , a is constant vector.

33. If  $\vec{v} = \overline{\omega} \ge \bar{r}$ , prove that  $\overline{\omega} = \frac{1}{2}$  curl  $\vec{v}$ , where  $\overline{\omega}$  is a constant vector.



## INDRAPRASTHA NEW ARTS COMMERCE & SCIENCE

Mahila Vikas Sanstha's

COLLEGE, AT POST NALWADI, DIST. WARDHA (M.S.) Accredited 'B' by NAAC of Maharashtra

Affiliated to Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur

> Recognised by U.G.C New Delhi under section 2 (f) & 12 (b) of UGC act 1956

- 34. Find the directional derivative of  $x^2y^2z^2$  at the point (1, 1, -1) in the direction of the tangent to the curve x = et, y = Sin 2t + 1, z = 1- cost at t = 0
- 35. Evaluate  $\iint_{\sqrt{x}}^{1} e^{\frac{x}{y}} dydx$  by changing the order of integration.
- 36. If  $\varphi = 2xz^4 x^2y$ , find  $\overline{\nabla}\varphi$  at (2, -2, -1).
- 37. Verify that the vector  $\overline{A} = 3y^4 z^2 i + 4x^3 z^2 j 3x^2 y^2 k$  is solenoidal. 38. Evaluate  $\iint_0^2 (x + 2) dx dy$
- 39. Evaluate  $\int_{1}^{2} \overline{F} dt$ , where  $\overline{F} = 3i + (t^{3} + 4t^{7})j + tk$ .
- 40. Determine limits for  $\iiint x^2 y \, dV$ , where V is the closed region bounded by the planes x + y + z = 4, x = 0, y = 0, z = 0.
- 41. Write the statement of Gauss Divergence Theorem.
- 42. Suppose  $\overline{H}$  = curl  $\overline{A}$ . Prove that  $\iint H^{\circ}\overline{n} \, dS = 0$  for any closed surface S.